The Modified Reductive Perturbation Method as Applied to the Boussinesq Equation
نویسنده
چکیده
In this work, we extended the application of “the modified reductive perturbation method” to long water waves and obtained the governing equations of Korteweg – de Vries (KdV) hierarchy. Seeking localized travelling wave solutions to these evolution equations we have determined the scale parameter g1 so as to remove the possible secularities that might occur. To indicate the effectiveness and the elegance of the present method, we studied the problem of the “dressed solitary wave method” and obtained exactly the same result. The present method seems to be fairly simple and practical as compared to the renormalization method and the multiple scale expansion method existing in the current literature.
منابع مشابه
Reductive Perturbation Method, Multiple–Time Solutions and the KdV Hierarchy
We apply a multiple–time version of the reductive perturbation method to study long waves as governed by the Boussinesq model equation. By requiring the absence of secular producing terms in each order of the perturbative scheme, we show that the solitary–wave of the Boussinesq equation can be written as a solitary–wave satisfying simultaneously all equations of the KdV hierarchy, each one in a...
متن کاملNUMERICAL SOLUTION OF BOUSSINESQ EQUATION USING MODIFIED ADOMIAN DECOMPOSITION AND HOMOTOPY ANALYSIS METHODS
In this paper, a Boussinesq equation is solved by using the Adomian's decomposition method, modified Adomian's decomposition method and homotopy analysis method. The approximate solution of this equation is calculated in the form of series which its components are computed by applying a recursive relation. The existence and uniqueness of the solution and the convergence of the proposed methods ...
متن کاملDetermination of Periodic Solution for Tapered Beams with Modified Iteration Perturbation Method
In this paper, we implemented the Modified Iteration Perturbation Method (MIPM) for approximating the periodic behavior of a tapered beam. This problem is formulated as a nonlinear ordinary differential equation with linear and nonlinear terms. The solution is quickly convergent and does not need complicated calculations. Comparing the results of the MIPM with the exact solution shows that this...
متن کاملConstructing Approximate and Exact Solutions for Boussinesq Equations using Homotopy Perturbation Padé Technique
Based on the homotopy perturbation method (HPM) and Padé approximants (PA), approximate and exact solutions are obtained for cubic Boussinesq and modified Boussinesq equations. The obtained solutions contain solitary waves, rational solutions. HPM is used for analytic treatment to those equations and PA for increasing the convergence region of the HPM analytical solution. The results reveal tha...
متن کاملNonresonant Excitation of the Forced Duffing Equation
We investigate the hard nonresonant excitation of the forced Duffing equation with a positive damping parameter E. Using the symbolic manipulation system MACSYMA, a computer algebra system. we derive the two term perturbation expansion by the method of multiple time scales. The resulting approximate solution is valid for small values of the coefficient e As the damping parameter e increases, th...
متن کامل